Math 236, additional problems for Homework \#4

These problems are due, along with the rest of Homework \#4, at the beginning of class on Friday, January 25.

A1. Let F_{n} denote the Fibonacci sequence $\left(F_{0}=0, F_{1}=1, F_{2}=1, F_{n}=F_{n-1}+F_{n-2}\right.$ for $\left.n \geq 3\right)$. Prove that for all $n \geq 1$,

$$
F_{1}+\cdots+F_{n}=F_{n+2}-1
$$

A2. Prove that for all $n \geq 1$,

$$
F_{1}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1} .
$$

A3. Formulate a conjecture about the value of the expression $F_{n}^{2}+F_{n+1}^{2}($ for $n=1,2,3, \ldots)$ in terms of other Fibonacci numbers. Then prove your conjecture is correct.

A4. Let the "Tribonacci sequence" be defined by $T_{1}=T_{2}=T_{3}=1$ and $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$ for all $n \geq 4$. Prove that $T_{n}<2^{n}$ for all $n \geq 1$.

A5. For $n \geq 1$, let M_{n} be the number of ways that a verse consisting of n syllables can be filled up with words of either 1 or 2 syllables. For instance, $M_{4}=5$, since we can have $A A A A$, $B A A, A B A, A A B$, or $B B$ where A denotes the word of 1 syllable and B denotes the word of 2 syllables. Prove that $M_{n}=F_{n}$ for all $n \geq 1$.

